Hydrological connectivity of hillslopes and streams: Characteristic time scales and nonlinearities

نویسندگان

  • Kevin J. McGuire
  • Jeffrey J. McDonnell
چکیده

[1] Subsurface flow from hillslopes is widely recognized as an important contributor to streamflow generation; however, processes that control how and when hillslopes connect to streams remain unclear. We investigated stream and hillslope runoff dynamics through a wet‐up period in watershed 10 of the H. J. Andrews Experimental Forest in the western Cascades of Oregon where the riparian zone has been removed by debris flows. We examined the controls on hillslope‐stream connectivity on the basis of observations of hydrometric, stable isotope, and applied tracer responses and computed transit times for multiple runoff components for a series of storms during the wet‐up phase of the 2002–2003 winter rainy season. Hillslope discharge was distinctly threshold‐like with a near linear response and average quick flow ratio of 0.58 when antecedent rainfall was greater than 20 mm. Hillslope and stream stormflow varied temporally and showed strong hysteretic relationships. Event water mean transit times (8–34 h) and rapid breakthrough from applied hillslope tracer additions demonstrated that subsurface contributing areas extend far upslope during events. Despite rapid hillslope transport processes during events, soil water and runoff mean transit times during nonstorm conditions were greater than the time scale of storm events. Soil water mean transit times ranged between 10 and 25 days. Hillslope seepage and catchment base flow mean transit times were between 1 and 2 years. We describe a conceptual model that captures variable physical flow pathways, their synchronicity, threshold activation, hysteresis, and transit times through changing antecedent wetness conditions that illustrate the different stages of hillslope and stream connectivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high‐resolution isotope data

To assess the influence of storage dynamics and nonlinearities in hydrological connectivity on time-variant stream water ages, we used a new long-term record of daily isotope measurements in precipitation and streamflow to calibrate and test a parsimonious tracer-aided runoff model. This can track tracers and the ages of water fluxes through and between conceptual stores in steeper hillslopes, ...

متن کامل

Hillslope subsurface flow similarity: Real-world tests of the hillslope Péclet number

[1] Similarity analysis offers the ability to model hydrological response using quantifiable landscape descriptors. It is possible to develop similarity indices based on analytical solutions to the governing dynamic equations (Brutsaert, 2005). Berne et al. (2005) provide derivation of such a similarity index (the hillslope Péclet number) of subsurface flow and saturation for hillslopes with ex...

متن کامل

Variability in isotopic composition of base flow in two headwater streams of the southern Appalachians

We investigated the influence of hillslope scale topographic characteristics and the relative position of hillslopes along streams (i.e., internal catchment structure) on the isotopic composition of base flow in first-order, forested headwater streams at Coweeta Hydrologic Laboratory. The study focused on two adjacent forested catchments with different topographic characteristics. We used stabl...

متن کامل

Role of microtopography in rainfall‐runoff partitioning: An analysis using idealized geometry

[1] Microtopography, consisting of small‐scale excursions in the elevation of the land surface on millimeter to centimeter scales, is ubiquitous on hillslopes, but its effects are rarely incorporated into hydrological analyses of rainfall‐runoff partitioning. To progress toward a hydrological theory that accounts for microtopography, two research questions are considered: (1) Does microtopograp...

متن کامل

A Model For The Residence Time Distribution and Holdup Measurement in a Two Impinging Streams Cyclone Reactor/Contactor in Solid-Liquid Systems

In this paper a two impinging streams cyclone contacting system suitable for handling of solid-liquid systems has been studied. Certain pertinent parameters such as: solid holdup, mean residence time and Residence Time Distribution (RTD) of solid particles have been investigated. A stochastic model based on Markov chains processes has been applied which describe the behavior of solid partic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010